Economic Valuation of Flood Mitigation Services

Keri Bryan, Taylor Ricketts, Gillian Galford, Steve Polasky, and Jarlath O’Neil-Dunne

Ecosystem Services and Climate Resilience

Increasing Flood Impacts

Observed U.S. Precipitation Change

Figure 2.12. The colors on the map show annual total precipitation changes for 1991-2012 compared to the 1901-1960 average, and show wetter conditions in most areas. The bars on the graphs show average precipitation differences by decade for 1901-2012 (relative to the 1901-1960 average) for each region. The far right bar in each graph is for 2001-2012. (Figure source: adapted from Peterson et al. 2013^{48}).

Increasing Flood Impacts

Trends in Flood Magnitude

Figure 3.5. Trend magnitude (triangle size) and direction (green = increasing trend, brown = decreasing trend) of annual flood magnitude from the 1920s through 2008. Flooding in local areas can be affected by multiple factors, including land-use change, dams, and diversions of water for use. Most significant are increasing trends for floods in Midwest and Northeast, and a decreasing trend in the Southwest. (Figure source: Peterson et al. 2013^{63}).

Flooding already has huge impacts globally

Wetlands and floodplains mitigate floods

Distribution of Wetlands

The Case of the Otter Creek and Tropical Storm Irene

Research Questions

- What was the value of the Otter Creek wetlands in reducing flood damage during Hurricane Irene in 2011?
- Beyond this one event, what is the expected annual value of the wetlands in mitigating flood damages?

Approach

- A hydrograph without wetlands
- Change in the extent of flooding
- Flooded structures
- Value in terms of avoided damages
- Mean annual value

With Wetlands

Monetary Damages
<\$1,000

- \$1,000-\$5,000
- \$5,000-\$10,000
- \$10,000- \$100,000
- $>\$ 100,000$

Without Wetlands

With Wetlands
$\$.14$ million

Monetary Damages
<\$1,000

- \$1,000-\$5,000
- \$5,000-\$10,000
- \$10,000- \$100,000
- $>\$ 100,000$

Without Wetlands

\$ 2.4 million

Conclusion: Wetlands and floodplains mitigate floods

- In applying this case study elsewhere, the percent reduction in damages may be more informative than the dollar values presented here.
- Although our modeling approach is simple, our key findings are robust to uncertainties.
- These values warrant the consideration of flood mitigation services in decisions.

Thanks and acknowledgements:

> Mike Kline (VT DEC)
> Ned Swawnberg (VT DEC)
> Arne Bomblies (UVM)
> Paul Marangelo (TNC)
> Kim Greenwood (VNRC)
> Michael Coe (UVM)
> Chandlee Keirstead (USGS)
> Richard Kiah (USGS)

USDA- McIntire-Stennis
Crea Lintilhac Foundation

Melillo, J. M., T. Richmond and G. Yohe (2014). Climate Change Impacts in the United States: The Third National Climate Assessment. Washington, DC, U.S. Global Change Research Program: 841.

Murray, Shannon Doocy Amy Daniels Sarah, \& Kirsch, Thomas D. The Human Impact of Floods: a Historical Review of Events 1980-2009... http://currents. plos. org/disasters/article/the-human-impact-of-floods-a-his.

FAO-UNESCO, Soil Map of the World, digitized by ESRI. Soil climate map, USDA-NRCS, Soil Science Division, World Soil Resources, Washington D.C.

